- Цветы и растения
- Аквариум и рыбы
- Для работы
- Для сайта
- Для обучения
- Почтовые индексы Украины
- Всяко-разно
- Электронные библиотеки
- Реестры Украины
- Старинные книги о пивоварении
- Словарь старославянских слов
- Все романы Пелевина
- 50 книг для детей
- Стругацкие, сочинения в 33 томах
- Записи Леонардо да Винчи
- Биология поведения человека
Главная Прочие дисциплины Книги Математичне програмування - Наконечний С.І. |
Математичне програмування - Наконечний С.І.
8.7. Опукле програмування
Опукле програмування розглядає методи розв’язування задач нелінійного програмування, математичні моделі яких містять опуклі або угнуті функції.
Загальний вигляд задачі опуклого програмування такий:
, (8.31)
,; (8.32)
, (8.33)
де , — угнуті функції.
Аналогічний вигляд має задача для опуклих функцій.
Позначимо: , тоді , і маємо:
, (8.34)
; (8.35)
, (8.36)
де , — опуклі функції.
Оскільки ці задачі еквівалентні, то нижче розглянемо задачу (8.31)—(8.33).
Множина допустимих планів задачі, що визначається системою (8.32), є опуклою.
Як наслідок теорем 8.2 та 8.3 справджується таке твердження: точка локального максимуму (мінімуму) задачі опуклого програмування (8.31)—(8.33) є одночасно її глобальним максимумом (мінімумом).
Отже, якщо визначено точку локального екстремуму задачі опуклого програмування, то це означає, що знайдено точку глобального максимуму (мінімуму).
У разі обмежень-нерівностей задачу опуклого програмування розв’язують, застосовуючи метод множників Лагранжа.
Функція Лагранжа для задачі (8.31)—(8.33) має вид:
(8.37)
де — множники Лагранжа.
Використовуючи теорему Куна — Таккера, маємо необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
Теорема 8.4. Якщо задано задачу нелінійного програмування виду (8.31)—(8.33), де функції диференційовні і вгнуті по Х, то для того, щоб вектор був розв’язком цієї задачі, необхідно і достатньо, щоб існував такий вектор , що пара (,) була б сідловою точкою функції Лагранжа, тобто щоб виконувалися умови:
(І) ,; (8.38)
(ІІ) , ; (8.39)
(ІІІ) , ; (8.40)
(IV) , . (8.41)
Для задачі мінімізації (8.34)—(8.36), де всі функції диференційовні і опуклі по Х, маємо умови, аналогічні вищенаведеним, але зі знаком «≥» в нерівностях (8.39) та (8.41).
Сформульована теорема доводиться з допомогою використання вищенаведених теорем цього та попередніх параграфів.
Created/Updated: 25.05.2018