special


МЕТАЛЛИЧЕСКИЙ ВОДОРОД

Физика. Исследования в физике.

Добро пожаловать на форум

  Какие сюрпризы таятся в водороде - самом распространённом элементе вселенной? Казалось бы всё давно изучено. Но всё-таки и сегодня эта тема ещё не закрыта.

  Еще в 1935 году появилась классическая работа Е. Вигнера и Х. Хантингтона, в которой они впервые предположили, что водород при высоких давлениях из газа-диэлектрика превратится в проводящий металл. По их расчетам твердый металлический водород должен был иметь объемно-центрированную решетку (при 0 К и нулевом давлении), а его плотность при тех же условиях должна быть существенно выше плотности твердого молекулярного водорода (0,59 г/см3 вместо 0,089 г/см3).

  Превращение, по мнению авторов, должно было произойти при давлении примерно 250 тыс. атм., а кроме того, они полагали, что для перехода нужны зародыши новой фазы. В 1968 году Н. Ашкрофт предсказал, что металлический водород будет обладать совершенно необычными свойствами, например сверхпроводимостью при высоких температурах (больше 200К).Более того, ученые предположили, что металлический водород будет быть в виде жидкости. Это еще больше подогрело любопытство исследователей. Проблему
сжатого водорода внесли в список наиболее важных задач физики твердого тела.

  Самая простая молекула оказалась совсем непростой прошло почти семьдесят лет, а ученые не только не получили металлический водород, но даже не имеют пока точных теоретических методов для построения модели этого процесса.

  Пик исследований металлического водорода пришелся на 60-70-е годы прошлого столетия. Эта проблема была интересна, в частности, астрофизикам. Солнце и тяжелые планеты (Юпитер, Сатурн) более чем на 90% состоят из водорода. Кроме того, ученые предполагают, что, поскольку на Юпитере довольно низкая температура (100-200К) и сильное магнитное поле, то, если водород там находится в металлической фазе и проявляет свои сверхпроводящие свойства, это должно привести к множеству интересных явлений. Но самое интересное то, что проблема сверхпроводящего металлического водорода, возможно, вовсе не теоретическая, а вполне прикладная.

  В 1971 году появились работы наших теоретиков (группа Ю. Кагана), которые доказывали, что металлический водород может оказаться метастабильным. Это значит, что после снятия высокого давления водород не превратится снова в газ-диэлектрик, а останется металлом. Вопрос в том, будет ли время существования такой метастабильной фазы достаточным, чтобы измерить ее свойства и успеть ее применить.

  Хорошо известный пример искусственный алмаз (метастабильная фаза углерода, в которую превращается стабильная фаза графит). Время жизни метастабильного алмаза так велико, что человечество применяет его не одно десятилетие. Ну а о том, на что пригодится сверхпроводящий при почти нормальных температурах водород, можно долго строить предположения.

   Пока это все фантазии. Как будет на самом деле, неизвестно, поскольку никому так и не удалось «подержать в руках» металлический водород.
Хотя как только его не сжимали!

  Для получения сверхвысоких давлений используют обычно или алмазные наковальни (статическое сжатие), или взрывные методы (динамическое сжатие).

Алмазная наковальня

  Алмазная наковальня  приспособление довольно простое и небольшое (правда, стоит она 10 000 долл). Два алмаза ограняют специальным образом (а вот это очень непросто) и между их центральными плоскими поверхностями внутри полости располагают образец. В полости обязательно есть металлическая прокладка. После того как камни сдавливают, на образец действует давление, обратно пропорциональное площади нижней плоской части алмаза, диаметр которой 20- 600 мкм.

  Работать с водородом очень трудно. Он не только физически проникает в металл прокладки и делает его хрупким, но и вступает с ним в химические реакции, образуя гидриды. Сжатый до определенного давления, водород переходит в молекулярное кристаллическое состояние, превращаясь в довольно необычную субстанцию. Вероятно, это связано со свойствами молекулы водорода она такая легкая, что даже в твердом кристаллическом состоянии при небольших давлениях молекулы продолжают вращаться.

  За последние четверть века после изобретения алмазных наковален исследователи системно изучили свойства твердого водорода вплоть до
давления 2 млн. атм.(последний рекорд 3.75 млн. атм.) Теперь ученые знают, что даже при этих давлениях существуют, по крайней мере, три фазы металлического водорода, причём каждая из них совершает переход диэлектрик - металл при своём значении давления. Одна при 1.6 млн. атм. , когда другие фазы ещё остаются диэлектриками. Последние теоретические данные позволяют надеяться, что весь водород перейдёт в металлическую фазу при 4 млн. атм. ( при 0 гр. К)

  Опять же остается открытым вопрос, распадается ли при этом водород на атомы или остается в молекулярном состоянии. Уже известно, что «коллеги» водорода по свойствам бром и йод становятся проводниками при высоком давлении именно в процессе плавления, то есть в атомарном виде. С другой стороны, есть данные, что в статических экспериментах при достигнутых давлениях водород находится в основном в виде молекул.

Установка ударного сжатия -США

  Гораздо более продуктивный способ получения высоких давлений взрывной метод, когда экспериментаторы ударяют по ячейке с образцом металлическими пластинами или струей газа, ускоренными до гиперзвуковых скоростей. Сейчас существуют установки однократного ударного сжатия, в которых водород можно сжимать до 10 млн. атм.

  В момент удара, когда давление достигает миллионов атмосфер, водород неизбежно нагревается до тысяч градусов Кельвина и переходит в жидкое состояние. Ученые пытаются придумать, как уменьшить температуры в эксперименте, но пока это все равно тысячи градусов. Более того, через микросекунды, когда заканчивается действие ударной волны, водород опять становится газом, поэтому померить что-то очень сложно.

  Но, решая проблему атомной бомбы, ученые научились с этим справляться. В динамических экспериментах измеряют плотность водорода, просвечивая образец рентгеновским излучением, либо судят о том, что происходит, по сигналам от оптических и электрических датчиков. Таким образом давление в таких опытах величина расчетная.

  Последний рекорд 15 млн. атм. Больших давлений удалось достичь ученым из Ливерморской национальной лаборатории(США), а в России исследователям из Всесоюзного научно-исследовательского института экспериментальной физики (г. Саров) и Института проблем химической физики РАН (г. Черноголовка).

  Измеряя сопротивление в динамических экспериментах, исследователи видели, что водород становится проводником, с проводимостью почти как у жидких металлов. Но эта проводимость все-таки слабо зависела от температуры, что свидетельствует, что водород еще не металл. Ученые характеризуют состояние водорода, которое они наблюдают в динамических экспериментах, как «неупорядоченная проводящая среда» (неупорядоченная так как температуры слишком высоки) или «плотная низкотемпературная неидеальная плазма», а появляющийся эффект проводимости «ионизация давлением»

  Так что ждём...

Версия для печати
P.S. Материал защищён.
Дата публикации 15.01.2004гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>