special


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2202735

ГАЗОГОРЕЛОЧНОЕ УСТРОЙСТВО ИНФРАКРАСНОГО ИЗЛУЧАТЕЛЯ

ГАЗОГОРЕЛОЧНОЕ УСТРОЙСТВО ИНФРАКРАСНОГО ИЗЛУЧАТЕЛЯ

Имя изобретателя: Карасевич А.М.; Крейнин Е.В.; Бондарчук В.Б. 
Имя патентообладателя: Дочернее открытое акционерное общество "Промгаз" Открытого акционерного общества "Газпром"
Адрес для переписки: 117420, Москва, ул. Наметкина, 6, ОАО "Промгаз", генеральному директору А.М.Карасевичу
Дата начала действия патента: 2001.09.06 

Изобретение относится к технике лучистого обогрева помещений в системе автономного локального их отопления. Газогорелочное устройство инфракрасного излучателя содержит камеру сгорания с многостадийным подводом воздуха на горение и экранирующую перегородку на начальном участке формирования факела, предотвращающую прямой контакт последнего с излучающей трубой и охлаждаемую рециркулирующими продуктами горения, в стенке камеры сгорания выполнены отверстия для рециркулирующих продуктов сгорания, а соотношение между площадью сечений суммы отверстий в стенке камеры сгорания газогорелочного устройства и площадью кольцевой щели между экранирующей перегородкой и внутренней поверхностью излучателя выбрано равным 0,4-1,0. Изобретение позволяет создать рециркуляционный инфракрасный излучатель с минимальным перегревом экранирующей перегородки и излучателя с минимальным выходом вредных компонентов (СО и NOх).

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к технике лучистого (инфракрасного) обогрева помещений в системе автономного локального их отопления.

Известна конструкция газогорелочного устройства с двухстадийным подводом воздуха на горение, обеспечивающая минимальную эмиссию оксидов азота, как результат ограничения максимальной температуры в факеле /1/.

Недостатком этого решения является отсутствие конкретных рекомендаций по оптимизации режимных параметров.

Известен и способ сжигания газа, в котором воздух на горение подается тремя потоками, а изменяя соотношение между ними, удается регулировать параметры факела /2/.

Однако этот способ невозможно адаптировать к инфракрасному излучателю.

Наиболее близким по технической сущности к заявляемому изобретению является конструктивное решение инфракрасного излучателя с рециркуляцией уходящих продуктов сгорания /3/.

Сопоставительный анализ показывает, что прототип имеет ряд недостатков:

- вся рециркулирующая смесь продуктов сгорания подается непосредственно в корень факела, что создает условия нестабильного горения;

- не предусмотрен поток рециркулянта вдоль кольцевой щели между экраном и трубой излучателя;

- не решена задача минимизации эмиссии СО и NOx, а и перегрева экранирующей перегородки.

Задача настоящего изобретения состоит в создании рециркуляционного инфракрасного излучателя с минимальным перегревом экранирующей перегородки и излучателя, при этом выход вредных компонентов (СО и NOx) не должен превышать ПДК.

Поставленная задача решается тем, что газогорелочное устройство инфракрасного излучателя содержит камеру сгорания с многостадийным подводом воздуха на горение и экранирующую перегородку на начальном участке формирования факела, предотвращающую прямой контакт последнего с излучающей трубой и охлаждаемую рециркулирующими продуктами горения, что в стенке камеры сгорания выполнены отверстия для рециркулирующих продуктов сгорания, а соотношение между площадью сечений суммы отверстий в стенке камеры сгорания газогорелочного устройства и площадью кольцевой щели между экранирующей перегородкой и внутренней поверхностью излучателя выбрано равным 0,4-1,0.

Признаки, отличающие предлагаемое газогорелочное устройство инфракрасного излучателя от решений в прототипе, являются существенными и отвечают критерию "новизна".

ГАЗОГОРЕЛОЧНОЕ УСТРОЙСТВО ИНФРАКРАСНОГО ИЗЛУЧАТЕЛЯ
 

На фиг. 1 изображен инфракрасный излучатель; на фиг.2 - сечение А-А на фиг.1; на фиг.3 - газогорелочное устройство.

Газогорелочное устройство 1 обеспечивает двухстадийное сжигание газа в горелочной ветви 2 инфракрасного излучателя. Экранирующая перегородка 3 ограничивает факел от прямого контакта с излучающей трубой. В уходящей ветви 4 инфракрасного излучателя смонтированы интенсификаторы теплообмена 5. Дымосос 6 не только эвакуирует дымовые газы из излучателя, но и частично возвращает их в горелочную ветвь 2 с помощью рециркуляционной линии 7.

Детально газогорелочное устройство рассмотрено на фиг.2.

Газовое сопло 8 с радиальными отверстиями входит в камеру первичного смешения 9. Вторичный воздух нагнетается через кольцевой канал между камерой первичного смешения 9 и внешней стенкой 10 газогорелочного устройства. Непосредственно к внешней стенке 10 примыкает экранирующая перегородка 3.

Для оптимизации соотношения расходов рециркулянта, подаваемого непосредственно в зону формирования факела и кольцевую щель между экранирующей перегородкой и внутренней поверхностью излучателя, был проведен специальный эксперимент.

Расход рециркулянта, подаваемый непосредственно в зону формирования факела, определяется проходным сечением отверстий II (fотв). Соотношение суммарной площади отверстий (fотв) и площади кольцевой щели между экранирующей перегородкой и внутренней поверхностью излучателя (Fк.щ.) обуславливает теплотехнические параметры процесса горения в факеле.

В нижеследующей таблице приведены результаты оптимизационных экспериментов на излучателе тепловой мощностью 50 кВт.

В проведенных экспериментах менялось количество отверстий II и их диаметр, т.е. проходное сечение fотв. Площадь сечения кольцевой щели Fк.щ. оставалась неизменной.

В первом эксперименте отверстия в стенках камеры горения отсутствовали (fотв=0) и весь рециркулянт подавался в кольцевую щель.

Факел в зоне формирования не разбавлялся уходящими продуктами сгорания, поэтому развивалась достаточно высокая температура в факеле и температура экранирующей перегородки достигала 650oС. При этом естественно эмиссия СО была минимальна - 27 мг/м3, а NOх - максимальна - 161 мг/м3.

При такой температуре экранирующей перегородки металл для ее изготовления должен быть легирован никелем, что естественно увеличит стоимость инфракрасного излучателя. Выход оксидов азота достаточно высок (161 мг/м3), что превышает современные экологические требования к загрязнению воздушного бассейна.

По мере увеличения величины соотношения fотв/Fк.щ. возрастает доля рециркулянта в камеру горения, следовательно, снижается максимальная температура и повышается выход СО.

Так, при величине отношения fотв/Fк.щ.=0,4÷1,0 температура экранирующей перегородки снизилась до 573÷594oС и для изготовления последней не требуется никелесодержащего металла. При этом концентрация СО не превышает допустимую ПДК (62,5 мг/м3) и составляет 34÷43 мг/м3, эмиссия NОх снизилась до 78÷94 мг/м3, что примерно в 2 раза ниже, чем при отношении fотв/Fк.щ.<0,4.отв/Fк.щ.2,0), одновременно с падением температуры до 550oС концентрация СО возрастает с 94 до 337 мг/м3, что в несколько раз превышает ПДК. При этом вместе со снижением температуры факела эмиссия NОхупала до 57 мг/м3.

Проведенные огневые испытания инфракрасного излучателя (см. таблицу) позволили определить оптимальные соотношения между количеством рециркулянта, нагнетаемого в зону формирования факела, и его расходом в поток продуктов горения за экранирующей перегородкой (конкретно это соотношение обусловлено величиной проходных сечений отверстий fотв и кольцевой щели Fк.щ.). Так, при величине соотношения fотв/Fк.щ.=0,7÷1,0 температура экранирующей перегородки не превышает 600oС (при этой температуре металл для ее изготовления может быть безникелевым), эмиссия СО не превышает ПДК (ниже 52,5 мг/м3), выход NОх (80÷90 мг/м3) отвечает современным требованиям охраны воздушного бассейна.

Поэтому оптимальными соотношениями fотв/Fк.щ. следует считать величины 0,7÷1,0 (эксперименты 5, 6, 7).

Оптимизированный по выходным экологическим и теплотехническим параметрам инфракрасный излучатель будет серийно выпускаться на Каменском заводе газоиспользующего оборудования.

Автономное отопление помещений с помощью инфракрасных излучателей позволяет на 30÷40% снизить расход топлива по сравнению с традиционным конвективным водовоздушным отоплением.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент Франции 2097321, кл. F 23 D 15/00, 1970 г.

2. А.с. СССР 1657870, кл. F 23 D 14/00, 1991 г.

3. Невидимов И. А. Инфракрасный газовый отопитель. Приложение к ж. "Эксперт". "Оборудование, рынок, предложение, цены". Июль 1999 г., с.31-34.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Газогорелочное устройство инфракрасного излучателя, содержащее камеру сгорания с многостадийным подводом воздуха на горение и экранирующую перегородку на начальном участке формирования факела, предотвращающую прямой контакт последнего с излучающей трубой и охлаждаемую рециркулирующими продуктами горения, отличающееся тем, что в стенке камеры сгорания выполнены отверстия для рециркулирующих продуктов сгорания, а соотношение между площадью сечений суммы отверстий в стенке камеры сгорания газогорелочного устройства и площадью кольцевой щели между экранирующей перегородкой и внутренней поверхностью излучателя выбрано равным 0,4-1,0.

Версия для печати
Дата публикации 29.01.2007гг

 

 


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';