special


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2150161

СПОСОБ РАБОТЫ КОМБИНИРОВАННОЙ ЭНЕРГОУСТАНОВКИ

СПОСОБ РАБОТЫ КОМБИНИРОВАННОЙ ЭНЕРГОУСТАНОВКИ

Имя изобретателя: Сайданов В.О.; Агафонов А.Н.; Аваков В.Б.; Ландграф И.К. 
Имя патентообладателя: Военный инженерно-технический университет
Адрес для переписки: 191185, Санкт-Петербург, ул. Захарьевская 22, ВИТУ, БИПР
Дата начала действия патента: 1999.03.18 

Изобретение относится к машиностроению, в частности к способам работы энергетических установок, предназначенных для выработки электрической энергии, и может быть применено для энергоснабжения объектов, функционирующих без связи с атмосферой. Техническим результатом изобретения является сокращение времени пуска и выхода энергоустановки на номинальную мощность с одновременным повышением эффективности способа работы установки, а и повышение экономичности по запасам рабочих сред и повышение надежности. Согласно изобретению способ включает в себя операции замещения инертного газа из контуров электрохимического генератора (ЭХГ) подачей в них кислорода и водорода, которые подогревают в теплообменных аппаратах жидкостью, циркулирующей в системе термостатирования, осуществления электрохимической реакции с выработкой электрического тока для питания потребителей, причем во время удаления инертного газа электрический ток получают в электрическом генераторе с приводом от двигателя внутреннего сгорания (ДВC), в который подают топливо, окислитель и наполнитель - инертный газ, в том числе удаляемый из контуров ЭХГ, сжигают полученную смесь, а отработанные газы охлаждают с использованием их теплоты для нагрева жидкости в системе термостатирования ЭХГ, очищают в нейтрализаторе и подают в ДВС.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к области машиностроения, в частности к способам работы энергоустановок, предназначенных для выработки электрической энергии, и может быть применено для энергоснабжения объектов, функционирующих без связи с атмосферой.

Известны способы работы энергоустановок путем получения электрической энергии в электрическом генераторе с приводом от двигателя внутреннего сгорания (ДВС), в который подают топливо, окислитель и наполнитель - инертный газ, сжигают полученную смесь с последующим совершением полезной работы, а образующиеся при сгорании продукты очищают в жидкостно-щелочном нейтрализаторе и подают в цилиндры ДВС [1, 2].

Недостатком известных способов [1, 2] является их относительно низкая экономичность по расходам и запасам рабочих сред и продуктов нейтрализации, которые, кроме того, необходимо еще и утилизировать, особенно при увеличении периода автономной работы при полной изоляции от атмосферы. Однако время пуска и приема номинальной нагрузки таких энергоустановок не превышает десятков секунд.

Известен способ работы энергоустановки путем замещения инертного газа из контуров электрохимического генератора (ЭХГ) подачей в них кислорода и водорода, которые подогреваются до оптимальных температур жидкостью, циркулирующей в системе термостатирования; осуществления электрохимической реакции с образованием воды и получением электрической энергии [3] - принятой за наиболее близкий аналог.

Недостатком известного способа работы энергоустановки является относительно длительное время запуска и выхода на номинальную мощность (1 - 2 час). Для сокращения времени запуска энергоустановки, реализующей известный способ работы, требуются дополнительные энергозатраты для поддержания температуры в ЭХГ в диапазоне от 80 до 100oC за счет электроподогрева воды системы термостатирования, как схемно решено в известном способе.

Другим недостатком известного способа работы энергоустановки является то обстоятельство, что удаленный из контуров ЭХГ инертный газ не используется, а просто хранится на объекте, занимая определенные объемы, что снижает экономичность способа в целом.

Задачей предлагаемого изобретения является сокращение времени пуска и выхода энергоустановки на номинальную мощность с одновременным повышением эффективности работы энергоустановки, а и повышение экономичности по запасам рабочих сред и повышение надежности.

Предлагается способ работы комбинированной энергоустановки путем замещения инертного газа из контуров ЭХГ подачей в них кислорода и водорода, которые подогреваются до оптимальных температур в рекуперативных теплообменных аппаратах жидкостью, циркулирующей в системе термостатирования, осуществления электрохимической реакции с образованием воды и выработкой электрического тока для питания потребителей, отличающийся тем, что во время удаления инертного газа и подогрева кислорода и водорода электрический ток для питания потребителей получают в электрическом генераторе с приводом от ДВС, в который подают топливо (водород или жидкое углеводородное), кислород и наполнитель - инертный газ, в том числе, удаляемый из контуров ЭХГ, сжигают полученную смесь с последующим совершением полезной работы, а образующиеся при сгорании отработанные газы охлаждают в рекуперативном теплообменном аппарате с использованием их теплоты для нагрева жидкости в системе термостатирования ЭХГ, очищают в жидкостно-щелочном нейтрализаторе и подают в цилиндры ДВС.

Такое техническое решение позволяет сократить время пуска и выхода на номинальную мощность энергоустановки с 1,5 - 2,0 часов до нескольких десятков секунд с одновременным повышением эффективности за счет использования в ДВС инертного газа, удаляемого из контуров ЭХГ, подогрева жидкости в системе термостатирования ЭХГ отбросной теплотой продуктов сгорания ДВС, а и повышением надежности и экономичности по запасам расходных сред.

Из существующего уровня техники не известны способы работы комбинированных энергоустановок путем подачи инертного газа из контуров ЭХГ в ДВС и подогрева жидкости в системе термостатирования ЭХГ за счет утилизации теплоты отработавших газов (ОГ) ДВС.

На чертеже изображена схема комбинированной энергоустановки, реализующей предлагаемый способ работы.

СПОСОБ РАБОТЫ КОМБИНИРОВАННОЙ ЭНЕРГОУСТАНОВКИ

Комбинированная энергоустановка содержит ЭХГ 1, систему хранения и подачи кислорода с источником кислорода 2, подогревателем 3 и запорно-регулирующей арматурой 4, 5, 6; систему хранения и подачи водорода с источником водорода 7, подогревателем 8 и запорно-регулирующей арматурой 9, 10, 11; систему хранения и подачи инертного газа (например, азота) с емкостью запаса инертного газа 12 и запорно-регулирующей арматурой 13, 14, 15, 16; систему термостатирования с емкостью запаса воды 17, циркуляционным насосом 18 и запорно-регулирующей арматурой 19, 20. Комбинированная энергоустановка содержит и рекуперативный теплообменный аппарат (ТА) 21, причем жидкостной контур ТА 21 включен в систему термостатирования между баком 17 и насосом 18, а газовый контур, соответственно, в выпускную систему дизель-генератора (ДГ) 22 между выхлопным коллектором 23 и жидкостно-щелочным нейтрализатором 24; кроме того, в выпускной системе ДГ 22 установлен сепаратор капельной влаги 25 и запорно-регулирующая арматура 26, 27, 28, 29, 30, 31. Выпускная система ДГ 22 соединена через смеситель 32 со впускной системой, которая, в свою очередь, соединена через запорно-регулирующую арматуру 33, 34, 35, соответственно, с источником кислорода 2, водорода 7, инертного газа 12 и с атмосферой. Жидкостно-щелочной нейтрализатор 24, кроме того, имеет щелочной контур, включающий бак запаса щелочи 37, циркуляционный насос 38 и емкость для удаления твердых продуктов нейтрализации 39.

 

Представленная на чертеже комбинированная энергоустановка работает следующим образом. Первоначально в течение нескольких десятков секунд запускается и принимает нагрузку ДГ 22. При этом возможны два режима запуска. Режим N 1 (открыты запорно-регулирующие органы 10, 26, 27, 29, 33, 36 и закрыты, соответственно, - 9, 28, 30, 31, 34, 35) - ДГ 22 сообщен с атмосферой, поэтому воздух на горение топлива забирается из атмосферы и туда же удаляются ОГ. Режим N 2 (открыты запорно-регулирующие органы 5, 10, 13, 14, 15, 16, 26, 27, 30, 31, 33, 34, 35 и закрыты, соответственно, - 28, 29, 36) - ДГ 22 изолирован от атмосферы и работает по замкнутому циклу. В качестве топлива при работе ДГ 22 в любом режиме может использоваться водород, поступающий из источника 7 (как показано на схеме) либо жидкое углеводородное топливо, подаваемое из дополнительного бака (на схеме не показан). При работе в режиме N 2 в качестве наполнителя для ДВС используется поступающий из системы ЭХГ инертный газ.

Высокотемпературные ОГ, образующиеся при сгорании топлива в цилиндрах ДВС ДГ 22, поступают в газовый контур ТА 21, где охлаждаются, нагревая при этом циркулирующую в жидкостном контуре ТА воду системы термостатирования ЭХГ 1. После чего ОГ удаляются в атмосферу (режим N 1) либо поступают в нейтрализатор 24 (режим N 2), где при взаимодействии с подаваемой насосом 38 из бака 37 щелочью происходит связывание части двуокиси углерода (CO2) с образованием твердого продукта, который удаляется в емкость 39. Далее ОГ поступают в сепаратор 25, где из них выделяют капельную влагу. После чего очищенные ОГ поступают в смеситель, где, смешиваясь с кислородом, поступающим из источника 2, и (если ДВС работает на водороде) водородом, поступающим из источника 7, а и инертным газом, поступающим из контуров ЭХГ, путем открытия запорно-регулирующих органов 14, 15, 16, образуют искусственную газовую смесь (ИГС), которая поступает в цилиндры ДВС ДГ 22.

ДГ 22 функционирует в режиме N 1 или N 2 в течение не более 1 часа, за это время происходит пуск ЭХГ 1, завершающийся выходом на номинальную мощность, который заключается, во-первых, в заполнении контуров ЭХГ реагентами (O2 и H2) путем открытия запорно-регулирующих органов 6, 11, т.к. в период бездействия водородный и кислородный контура ЭХГ заполнены инертным газом, например азотом, который необходимо удалить из систем, при этом удаляемый инертный газ используется в качестве наполнителя для ДВС; во-вторых, в нагревании циркулирующей через жидкостный контур ТА 21 воды системы термостатирования до оптимальной температуры 80 - 100oC, являющейся рабочей температурой ТА 21, в котором осуществляется прогрев воды системы термостатирования ЭХГ, за счет бросовой теплоты ОГ ДГ повышается эффективность пуска ЭХГ.

После этого выводится из действия (останавливается) ДГ 22 путем прекращения подачи топлива и окислителя (закрытия запорно-регулирующих органов 33, 34) и отключается ТА 21 (закрываются органы 26, 27).

Затем в течение всего оставшегося времени периода полной изоляции объекта от атмосферы энергоснабжение осуществляется от работающего ЭХГ 1, который потребляет гораздо меньше (по сравнению с ДГ 22) топлива и особенно окислителя (в 2 - 3 раза). При этом ДГ 22 остается резервным источником энергии объекта и, в случае выхода из строя ЭХГ 1 вследствие каких-либо неисправностей, вводится в действие за секунду и обеспечивает энергоснабжение объекта, что повышает надежность способа работы комбинированной энергоустановки в целом.

Таким образом, предлагаемый способ работы комбинированной энергоустановки за счет дополнительной операции - подачи инертного газа, удаляемого из контуров ЭХГ, в ДВС, а и осуществления подогрева жидкости в системе термостатирования за счет утилизации теплоты продуктов сгорания ДВС позволяет сократить время пуска и приема номинальной нагрузки с 1,5 - 2 часов до нескольких десятков секунд с одновременным повышением эффективности, экономичности и надежности работы.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Авторское свидетельство СССР N 1206451, кл. F 01 N 3/08, 1983.

2. Патент США N 3779013, кл. 123-3, 1973.

3. G.Sattier. Air Independent Propulsion Sistem For Submarines. //Naval Forces, 1989, march, p. 71-74.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ работы комбинированной энергоустановки путем замещения инертного газа из контуров электрохимического генератора подачей в них кислорода и водорода, которые подогреваются до оптимальных температур в рекуперативных теплообменных аппаратах жидкостью, циркулирующей в системе термостатирования, осуществления электрохимической реакции с образованием воды и выработкой электрического тока для питания потребителей, отличающийся тем, что во время удаления инертного газа и подогрева кислорода и водорода электрический ток для питания потребителей получают в электрическом генераторе с приводом от двигателя внутреннего сгорания, в который подают топливо - водород или жидкое углеводородное, кислород и наполнитель - инертный газ, в том числе удаляемый из контуров электрохимического генератора, сжигают полученную смесь с последующим совершением полезной работы, а образующиеся при сгорании отработанные газы охлаждают в рекуперативном теплообменном аппарате с использованием их теплоты для нагрева жидкости в системе термостатирования электрохимического генератора, очищают в жидкостно-щелочном нейтрализаторе и подают в цилиндры двигателя внутреннего сгорания.

Версия для печати
Дата публикации 10.02.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';