Начало раздела Производственные, любительские Радиолюбительские Авиамодельные, ракетомодельные Полезные, занимательные | Хитрости мастеру Электроника Физика Технологии Изобретения | Тайны космоса Тайны Земли Тайны Океана Хитрости Карта раздела | |
Использование материалов сайта разрешается при условии ссылки (для сайтов - гиперссылки) |
Навигация: => | На главную/ Каталог патентов/ В раздел каталога/ Назад / |
ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2282274
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ
Имя изобретателя: Исмаилов Тагир Абдурашидович (RU); Вердиев Микаил Гаджимагомедович (RU); Евдулов Олег Викторович (RU)
Имя патентообладателя: Дагестанский государственный технический университет (ДГТУ) (RU)
Адрес для переписки: 367015, г.Махачкала, пр. имама Шамиля, 70, ДГТУ, отдел интеллектуальной собственности
Дата начала действия патента: 2004.06.18
Изобретение относится к конструкциям термоэлектрических батарей (ТЭБ). Технический результат: увеличение перепада температур. Сущность: ТЭБ состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин чередующихся ветвей, изготовленных соответственно из полупроводника р-типа и n-типа. Электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа, где ветвь р-типа контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа - с другой. Каждая ветвь в ТЭБ контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами. Коммутационные пластины имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа, вследствие чего их концы выступают за поверхность структуры, образованной ветвями ТЭБ. Концы нечетных коммутационных пластин выступают за одну поверхность структуры, а концы четных коммутационных пластин - за другую. Коммутационные пластины в той части, которая выступает за поверхность структуры, образованной ветвями ТЭБ, имеют сквозные отверстия. Отверстия всех четных коммутационных пластин посредством трубопроводов, выполненных из электроизоляционного материала, соединены в единый канал, по которому в процессе функционирования ТЭБ протекает теплоноситель. Аналогичным образом объединены в единый канал посредством трубопроводов, выполненных из электроизоляционного материала, отверстия всех нечетных коммутационных пластин. ТЭБ и трубопроводы изолированы от окружающей среды за счет теплоизоляции.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ).
Известна ТЭБ, описанная в [1]. ТЭБ состоит из последовательно соединенных в электрическую цепь полупроводниковых термоэлементов, каждый из которых образован двумя ветвями (столбиками, выполненными либо цилиндрическими, либо в виде прямоугольного параллелепипеда), изготовленными из полупроводника соответственно р- и n-типа. Ветви термоэлементов соединяются между собой посредством коммутационных пластин, причем коммутация обеих ветвей (р- и n-типа) к коммутационной пластине производится к одной и той же плоской поверхности по краям последней. При этом термоэлемент имеет П-образную форму, где вертикальные элементы - р- и n-ветви, а горизонтальные - коммутационные пластины. Электрически последовательно соединенные коммутационными пластинами термоэлементы, образующие ТЭБ, заключены между двумя высокотеплопроводными электроизоляционными пластинами - теплопереходами (обычно керамическими).
Недостатками известной конструкции являются: наличие механических напряжений, обусловленных биметаллическим эффектом, значительных контактных электрических и тепловых сопротивлений (коммутационных пластин и теплопереходов), теплопритоков от горячих коммутационных пластин к холодным по межтермоэлементным промежуткам, снижающих эффективность функционирования ТЭБ, а и сложность эффективного съема тепла со спаев термоэлементов.
Наиболее близкой к заявленной является ТЭБ, описанная в [2], состоящая из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа, где ветвь р-типа контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа - с другой, причем каждая ветвь контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами.
Известная ТЭБ не позволяет достичь значительного перепада температур при использовании жидких теплоносителей.
Задачей, на решение которой направлено изобретение, является создание термоэлектрической батареи, лишенной указанных недостатков.
Техническим результатом, достигаемым при использовании изобретения, является повышение перепада температур за счет использования жидких теплоносителей.
Решение поставленной задачи обеспечивается тем, что в термоэлектрической батарее, состоящей из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа, где ветвь р-типа контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа - с другой, причем каждая ветвь в термоэлектрической батарее контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами, при этом коммутационные пластины имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа, вследствие чего их концы выступают за поверхность структуры, образованной ветвями термоэлектрической батареи, концы нечетных коммутационных пластин выступают за одну поверхность структуры, а концы четных коммутационных пластин - за другую, при этом коммутационные пластины в той части, которая выступает за поверхность структуры, образованной ветвями термоэлектрической батареи, имеют сквозные отверстия, отверстия всех нечетных коммутационных пластин посредством электроизоляционных трубопроводов соединены в один канал, по которому в процессе функционирования термоэлектрической батареи протекает теплоноситель, а отверстия всех четных коммутационных пластин соединены таким же образом во второй канал, причем термоэлектрическая батарея и трубопроводы изолированы от окружающей среды теплоизоляцией.
Изобретение поясняется чертежом, где изображена конструкция ТЭБ. ТЭБ состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин 1 и 2 чередующихся ветвей, изготовленных соответственно из полупроводника р-типа 3 и n-типа 4. Электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа 3 - коммутационная пластина 1 или 2 - ветвь n-типа 4, где ветвь р-типа 3 контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа 4 - с другой. Каждая ветвь в ТЭБ контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами 1 и 2. Коммутационные пластины 1 и 2 имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа 3 и 4, вследствие чего их концы выступают за поверхность структуры, образованной ветвями ТЭБ. Концы нечетных коммутационных пластин 1 выступают за одну поверхность структуры, а концы четных коммутационных пластин 2 - за другую.
Коммутационные пластины 1 и 2 в той части, которая выступает за поверхность структуры, образованной ветвями ТЭБ, имеют сквозные отверстия соответственно 5 и 6. Отверстия 5 всех коммутационных пластин 1 посредством трубопроводов 7, выполненных из электроизоляционного материала, соединяются в единый канал, по которому в процессе функционирования ТЭБ протекает теплоноситель. Аналогичным образом объединяются в единый канал посредством трубопроводов 8, и выполненных из электроизоляционного материала, отверстия 6 всех коммутационных пластин 2.
На крайней торцевой поверхности ветвей, находящихся соответственно в начале и конце ТЭБ, имеются контактные площадки 9, посредством которых осуществляется подвод к ТЭБ электрической энергии. ТЭБ и трубопроводы 7 и 8 изолированы от окружающей среды за счет теплоизоляции 10.
ТЭБ в режиме термоэлектрического холодильника функционирует следующим образом.
При прохождении по ТЭБ постоянного электрического тока, подаваемого от источника электрической энергии (не показан) через контактные площадки 9, между коммутационными пластинами 1 и 2, представляющими собой контакты ветвей р- и n-типа 3 и 4, возникает разность температур, обусловленная выделением и поглощением теплоты Пельтье. При указанной на чертеже полярности электрического тока происходит нагрев коммутационных пластин 2 и охлаждение коммутационных пластин 1. Соответственно имеет место нагрев теплоносителя, протекающего по каналу, образованному сквозными отверстиями 6 в коммутационных пластинах 2 и трубопроводами 8, и охлаждение теплоносителя, протекающего по каналу, образованному сквозными отверстиями 5 в коммутационных пластинах 1 и трубопроводами 7.
Охлажденный теплоноситель используется для отвода тепла от объекта охлаждения, а нагретый - охлаждается за счет естественного или принудительного теплообмена с окружающей средой посредством системы теплосброса.
ТЭБ в режиме термоэлектрического генератора функционирует следующим образом.
При протекании, например, по каналу, образованному отверстиями 6 в коммутационных пластинах 2 и трубопроводами 8 теплоносителя с повышенной температурой, и по каналу, образованному отверстиями 5 коммутационных пластинах 1 и трубопроводами 7 теплоносителя с пониженной температурой, между коммутационными пластинами 1 и 2 устанавливается некоторая разность температур. При наличии такой разности температур между коммутационными пластинами 1 и 2, осуществляющими контакт ветвей р- и n-типа 3 и 4 между контактными площадками 9, возникает разность потенциалов - термо-эдс, обусловленная эффектом Зеебека. При замыкании контактных площадок 9 на определенную электрическую нагрузку в образовавшейся цепи возникает постоянный электрический ток. Величина протекающего в цепи электрического тока зависит от значения термо-эдс, которая в свою очередь зависит от коэффициента термо-эдс термоэлектрического материала, числа термоэлементов в ТЭБ, разности температур между коммутационными пластинами 1 и 2 и величины электрической нагрузки.
Заявляемая ТЭБ имеет следующие преимущества по сравнению с существующим аналогом:
1. Исключение механических напряжений, вызванных биметаллическим эффектом и, следовательно, повышение надежности ТЭБ.
2. В заявляемой конструкции в значительной мере уменьшаются перетоки тепла с горячих контактов на холодные контакты соседних ветвей ТЭБ.
3. Коммутирующие пластины вследствие специфики исполнения контактов ТЭБ имеют намного меньшую толщину по направлению электрического тока, чем в аналоге, следствием чего является значительное уменьшение их электрических и термических сопротивлений и теплоемкостей, что дает возможность достигнуть более низких температур, а и уменьшает постоянную времени выхода на рабочий режим ТЭБ; кроме того, уменьшаются контактные электрические сопротивления.
4. В заявляемой конструкции могут быть использованы ветви различной длины, что дает возможность для более точного согласования таких параметров, как оптимальный ток и перепад температур для каждой пары ветвей р- и n- типа, следствием чего является повышение энергетической эффективности ТЭБ.
5. Улучшенные условия теплообмена между объектом охлаждения и коммутационными пластинами, а и коммутационными пластинами и системой теплосброса.
ЛИТЕРАТУРА
1. Бурштейн А.И. Физические основы расчета полупроводниковых термоэлектрических устройств. М.: Физматгиз, 1962.
2. Б.С.Поздняков, Е.А.Коптелов. Термоэлектрическая энергетика, М., Атомиздат, 1974 г., с.88, рис.5.13.
ФОРМУЛА ИЗОБРЕТЕНИЯ
Термоэлектрическая батарея, состоящая из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа, где ветвь р-типа контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа - с другой, причем каждая ветвь в термоэлектрической батарее контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами, при этом коммутационные пластины имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа, вследствие чего их концы выступают за поверхность структуры, образованной ветвями термоэлектрической батареи, отличающаяся тем, что концы нечетных коммутационных пластин выступают за одну поверхность структуры, а концы четных коммутационных пластин - за другую, при этом коммутационные пластины в той части, которая выступает за поверхность структуры, образованной ветвями термоэлектрической батареи, имеют сквозные отверстия, при этом отверстия всех нечетных коммутационных пластин посредством электроизоляционных трубопроводов соединены в один канал, по которому в процессе функционирования термоэлектрической батареи протекает теплоноситель, а отверстия всех четных коммутационных пластин соединены таким же образом во второй канал, причем термоэлектрическая батарея и трубопроводы изолированы от окружающей среды теплоизоляцией.
Версия для печати
Дата публикации 13.01.2007гг
Created/Updated: 25.05.2018