Начало раздела Производственные, любительские Радиолюбительские Авиамодельные, ракетомодельные Полезные, занимательные | Хитрости мастеру Электроника Физика Технологии Изобретения | Тайны космоса Тайны Земли Тайны Океана Хитрости Карта раздела | |
Использование материалов сайта разрешается при условии ссылки (для сайтов - гиперссылки) |
Навигация: => | На главную/ Каталог патентов/ В раздел каталога/ Назад / |
ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2285680
ТЕПЛОИЗОЛЯЦИОННЫЙ СОСТАВ
Имя изобретателя: Быкова Эмма Валеевна (RU); Дорофеев Андрей Алексеевич (RU); Коршунова Гульзара Хамитовна (RU); Савкин Геннадий Григорьевич
Имя патентообладателя: Федеральное агентство по атомной энергии (RU); Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"
Адрес для переписки: 607188, Нижегородская обл., г. Саров, пр. Мира, 37, ФГУП "РФЯЦ-ВНИИЭФ", начальнику ОПИНТИ
Дата начала действия патента: 2004.11.22
Изобретение относится к технологии производства строительных материалов из минеральных веществ и может быть использовано для изготовления теплоизоляционных материалов для ненесущих конструкционных изделий. Технический результат: повышение технологичности при механической обработке за счет повышения механической прочности, деформируемости, снижения хрупкости при сохранении термостойкости и низкой плотности готового материала. Для получения формуемой массы предварительно готовят исходную композицию, выбирая в качестве связующего жидкое натриевое стекло с плотностью d=1,36-1,42 г/см 3, в качестве кремнийсодержащего отвердителя - кремнефтористый натрий и глицерин в качестве модифицирующего агента. Содержание ингредиентов выбирают в заявляемых пределах соотношений, мас.%: - кремнийсодержащее соединение - 2-5; - зольные микросферы - 20-45; - модифицирующий агент из группы многоатомных спиртов - 2-4; - жидкое стекло - остальное.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Предполагаемое изобретение относится к области производства строительных материалов из минеральных веществ, и может быть использовано для изготовления теплоизоляционных материалов для ненесущих конструкционных изделий.
Известен теплоизоляционный состав, включающий в качестве связующего жидкое стекло, огнеупорный наполнитель в виде полых микросфер на основе кремнийсодержащего вещества из золы-уноса ТЭС и порошкообразные добавки - кремнеземистая пудра, оксиды карбоната или бората (заявка Великобритании №1550184, МПК С 04 В 43/00, опубл. 1979 г.).
К недостаткам аналога относится достаточно высокая плотность готового материала за счет высокого содержания упрочняющих добавок, что негативно отражается на теплоизоляционных свойствах готовых изделий и ограничивает области их использования.
Известен в качестве наиболее близкого по технической сущности и достигаемому техническому результату к заявляемому теплоизоляционный состав для получения теплоизоляционного материала, включающий в качестве связующего жидкое стекло, в качестве огнеупорного наполнителя - стеклянные микросферы и микросферы из золы - уноса ТЭС, технологические добавки (патент РФ №2098379, опубл. БИ 24/95 от 20.08.95 г).
К недостаткам известного теплоизоляционного состава относится недостаточно высокая технологичность при механической обработке за счет невысоких показателей механической прочности, деформируемости и значительной хрупкости.
Задачей авторов предлагаемого теплоизоляционного состава является разработка рецептуры материала, характеризующегося высокими значениями технологичности при механической обработке за счет повышения механической прочности, деформируемости и стойкости к эксплуатации в умеренных климатических условиях, снижения хрупкости при сохранении термостойкости и низкой плотности.
Новый технический результат, достигаемый при использовании предлагаемого теплоизоляционного состава, состоит в повышении технологичности за счет улучшения показателей механической прочности, деформируемости, снижения хрупкости при одновременном сохранении термостойкости, низкой плотности готового материала.
Указанные задача и новый технический результат, обеспечиваемый изобретением, достигаются тем, что известный теплоизоляционный состав, включающий в качестве связующего жидкое стекло, в качестве огнеупорного наполнителя кремнийсодержащие микросферы из золы -уноса ТЭС, технологические добавки, дополнительно содержит соединение из группы многоатомных спиртов в качестве модифицирующего агента при следующем содержании ингредиентов, мас.%:
- кремнийсодержащее соединение | 2-5 |
- зольные микросферы | 20-45 |
- модифицирующий агент из группы | |
многоатомных спиртов | 2-4 |
- жидкое стекло | остальное. |
Наличие отличительных от прототипа существенных признаков свидетельствует о соответствии предлагаемого изобретения критерию "новизна".
Согласно предлагаемому изобретению композицию для теплоизоляционного материала готовят следующим образом.
Первоначально готовят формуемую массу путем смешения кремнийсодержащего соединения в качестве отвердителя, кремнийсодержащего связующего - водного раствора силиката щелочного металла, модифицирующего агента в виде органического соединения из группы многоатомных спиртов, затем огнеупорного наполнителя из кремнийсодержащих зольных микросфер, которые контактируют последовательным дозированием с последующим механическим перемешиванием смеси равномерно для избежания комкования сырьевой массы.
Наличие модифицирующего агента из группы многоатомных спиртов в составе формуемой массы способствует проявлению свойств, характерных не только для традиционного применения в качестве пластификаторов, но, как это показали эксперименты, и специфичных свойств в новой, отличной от прототипа, системе компонентов.
При этом снижается поверхностное натяжение в жидкой фазе формуемой массы, что приводит к ускоренному и более равномерному распределению частиц твердой фазы в ней, которое успевает наиболее полно реализоваться в течение фактического периода отверждения, а следовательно, и более оптимальному перераспределению когезионно-адгезионного взаимодействия между составляющими единицами формуемой системы.
Эксперименты показали, что наличие модифицирующего агента указанного типа совместно с отвердителем создает мягкие условия при формовании и отверждении, способствующие образованию упругих и подвижных связей между молекулами связующего и огнеупорного наполнителя в менее вязкой среде, вследствие чего готовый материал характеризуется более высокой технологичностью за счет улучшения деформируемости и значительного снижения хрупкости, чем это достигнуто в прототипе.
Кроме того, показано, что совместное присутствие соединения из группы многоатомных спиртов и кремнийсодержащего отвердителя в среде кремнийсодержащего связующего приводит к тому, что процесс взаимодействия их с поверхностным веществом кремнийсодержащих зольных микросфер протекает наиболее полноценно. При этом проявляется и каталитическое, и, одновременно, структурообразующее воздействие модифицирующего агента на процесс отверждения формуемой массы, результатом чего является повышение механической прочности и сохранение показателей термостойкости, несмотря на то, что исключены стеклянные микросферы в качестве наполнителя и относительное содержание связующего как структурной основы прочности формуемого материала ниже, чем в прототипе.
Указанные компоненты вводят в количествах, соответствующих заявленному диапазону соотношений.
Снижение содержания отвердителя и модифицирующего агента ниже нижнего предела заявляемых соотношений ведет к недооформлению готового материала, тогда как превышение содержания их выше предельных концентраций ведет к чрезмерному ускорению процесса отверждения и проявлению брака неоднородности структуры.
Экспериментально обоснован и выбор содержания связующего и огнеупорного наполнителя, и способствующих в совокупности с отвердителем и модифицирующим агентом достижению максимальных значений показателей термостойкости и механической прочности.
Готовую композицию, содержащую все указанные компоненты в заявляемых пределах соотношений, после смешения подвергают формованию по методу свободного литья в формы для получения пористой заготовки. В процессе формования на формовочную смесь воздействуют тепловым потоком в диапазоне температур порядка 250°С.
После завершения процесса отверждения форму разбирают и готовые изделия охлаждают. Образцы подвергают испытаниям.
Результаты испытаний сведены в таблицу.
Таким образом, использование предлагаемого теплоизоляционного состава обеспечивает сравнимые с прототипом термостойкость и низкую плотность, и более высокие показатели механической прочности и упругости.
Возможность промышленной реализации изобретения подтверждается следующими примерами реализации.
Пример 1. Предлагаемый теплоизоляционный состав был изготовлен в лабораторных условиях для изделий массой Q=7 кг. Для получения формуемой массы предварительно готовили исходную композицию, выбирая в качестве связующего жидкое натриевое стекло с плотностью d=1,38 г/см3, в качестве кремнийсодержащего отвердителя - кремнефтористый натрий, и глицерин в качестве модифицирующего агента. Каждую операцию смешения осуществляют при механическом перемешивании на механической мешалке не менее 1,5 минут.
Фракцию полых зольных микросфер в диапазоне размеров частиц 10-300 мкм вводят в готовую смесь связующего, отвердителя и модифицирующего агента и перемешивают на электрической мешалке в течение 10 минут. Подготовленную формовочную смесь выливают в форму, которую прогревают в электропечи ступенчато при температуре от 100 до 250°С в течение 9 часов. Термообработку ведут до полного удаления растворителя (воды), затем отключают нагрев, извлекают и испытывают образцы. Результаты испытаний сведены в таблицу.
Из таблицы видно, что готовый материал характеризуется более высокими показателями технологичности, механической прочности и деформируемости (предела прочности на сжатие, относительной величины деформации) при сохранении высокой термостойкости и низкой плотности.
Как показали экспериментальные исследования, использование изобретения позволяет получить теплоизоляционный материал, характеризующийся более высокими показателями технологичности за счет повышения механической прочности и деформируемости, при одновременном сохранении термостойкости и низкой плотности.
Таблица | ||||||||
Технико-экономические показатели готовых изделий | Составы по примерам | |||||||
Прототип | Предлагаемый состав | |||||||
Примеры | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Кремнийсодержащее соединение (отвердитель), % мас. | 4 | 3 | 2 | 2 | 3 | 4 | 4 | 4 |
Зольные микросферы, % мас. | 19 | 28 | 40 | 30 | 40 | 45 | 40 | 40 |
Стеклянные микросферы, % мас. | 11 | 7 | - | - | - | - | - | - |
Общее количество микросфер, % мас. | 30 | 35 | 40 | 20 | 40 | 45 | 40 | 40 |
Модифицирующий агент, % мас. | 2 | 2 | 2 | 3 | 4 | |||
Жидкое стекло | Остальное | |||||||
Плотность, г/см 3 | 0,44 | 0,52 | 0,56 | 0,41 | 0,53 | 0,57 | 0,51 | 0,61 |
Предел прочности при сжатии , МПа | 3,7 | 6,0 | 6,8 | 6,0 | 7,3 | 9,5 | 8,8 | 12 |
Средняя относительная деформация при испытаниях на сжатие, % | 1,03 (практически отсутствует) | 3,5 |
ФОРМУЛА ИЗОБРЕТЕНИЯ
Теплоизоляционный состав, содержащий жидкое стекло в качестве связующего, огнеупорный наполнитель в виде кремнийсодержащих зольных микросфер, кремнийсодержащее соединение в качестве отвердителя, отличающийся тем, что он дополнительно содержит соединение из группы многоатомных спиртов в качестве модифицирующего агента при следующем содержании ингредиентов, мас.%:
Кремнийсодержащее соединение | 2-5 |
Зольные микросферы | 20-45 |
Модифицирующий агент из группы | |
многоатомных спиртов | 2-4 |
Жидкое стекло | Остальное |
Версия для печати
Дата публикации 18.01.2007гг
Created/Updated: 25.05.2018