Начало раздела Производственные, любительские Радиолюбительские Авиамодельные, ракетомодельные Полезные, занимательные | Хитрости мастеру Электроника Физика Технологии Изобретения | Тайны космоса Тайны Земли Тайны Океана Хитрости Карта раздела | |
Использование материалов сайта разрешается при условии ссылки (для сайтов - гиперссылки) |
Навигация: => | На главную/Электроника/ Схемы/ Питание аппаратуры/ |
СХЕМА ЭЛЕКТРОННОГО СТАБИЛИЗАТОРА СЕТЕВОГО НАПРЯЖЕНИЯ НА 6 КВТ
( переработанная схема )
Годин Алексей Валерьевич
Напряжение сети, особенно в сельской местности, нередко выходит за пределы, допустимые для питаемой аппаратуры, что приводит к ее выходу из строя. Избежать столь неприятных последствий возможно с помощью стабилизатора, который поддерживает выходное напряжение в необходимых пределах для нагрузки, а если это невозможно — отключает ее. Предлагаемое устройство относится к весьма перспективным конструкциям, в которых нагрузка автоматически подключается к соответствующему отводу обмотки автотрансформатора в зависимости от текущего значения напряжения сети.
Из-за нестабильности напряжения в сети в Подмосковье вышел из строя холодильник. Проверка напряжения в течение дня выявила его изменения от 150 до 250 В. Как следствие, занялся вопросом приобретения стабилизатора. Знакомство с ценами на готовые изделия повергло в шок. Стал искать схемы в литературе и Интернет. Почти подходящий по параметрам стабилизатор с микроконтроллерным управлением описан в [1]. Но его выходная мощность недостаточно высока, переключение нагрузки зависит не только от амплитуды, но и от частоты напряжения сети. Поэтому было решено создать собственную конструкцию стабилизатора, не обладающую этими недостатками. В предлагаемом стабилизаторе не использован микроконтроллер, что делает его доступным для повторения более широкому кругу радиолюбителей. Нечувствительность к частоте напряжения сети позволяет его использовать в полевых условиях, когда источником электроэнергии является автономный дизель-генератор.
Основные технические характеристики
Входное напряжение, В . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
130…270
Выходное напряжение, В . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
205…230
Максимальная мощность нагрузки, кВт. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Время переключения (отключения) нагрузки, мс . . . . . . . . . . . . . . . . . . . . .
. 10
ПРИНЦИП РАБОТЫ СХЕМЫ
- СКАЧАТЬ СХЕМУ В ФОРМАТЕ DjVu -
- КРАТКОЕ ОПИСАНИЕ ФОРМАТА DjVu -
Устройство содержит следующие узлы: Блок питания на элементах T1, VD1, DA1, C2, C5. Узел задержки включения нагрузки C1, VT1—VT3, R1—R5. Выпрямитель для измерения амплитуды напряжения сети VD2, C2 с делителем R13, R14 и стабилитроном VD3. Компаратор напряжения DA2, DA3, R15—R39. Логический контроллер на микросхемах DD1—DD5. Усилители на транзисторах VT4—VT12 с токоограничительными резисторами R40—R48. Индикаторные светодиоды HL1—HL9, семь оптронных ключей, содержащих оптосимисторы U1—U7, резисторы R6—R12, симисторы VS1—VS7. Напряжение сети подключено к соответствующему отводу обмотки автотрансформатора T2 через автоматический выключатель-предохранитель QF1. Нагрузка подключена к автотрансформатору T2 через открытый симистор (один из VS1—VS7).
Стабилизатор работает следующим образом. После включения питания конденсатор C1 разряжен, транзистор VT1 закрыт, а VT2 открыт. Транзистор VT3 закрыт, а так как ток через светодиоды, в том числе входящие в состав симисторных оптронов U1—U7, может протекать только через этот транзистор, то ни один светодиод не горит, все симисторы закрыты, нагрузка отключена. Напряжение на конденсаторе C1 возрастает по мере его зарядки от источника питания через резистор R1. По окончании трехсекундного интервала задержки, необходимого для завершения переходных процессов, срабатывает триггер Шмидта на транзисторах VT1 и VT2, транзистор VT3 открывается и разрешает включение нагрузки.
Напряжение с обмотки III трансформатора T1 выпрямляется элементами VD2C2 и поступает на делитель R13, R14. Напряжение на движке подстроечного резистора R14, пропорциональное напряжению сети, поступает на неинвертирующие входы восьми компараторов (микросхемы DA2,DA3). На инвертирующие входы этих компараторов поступают постоянные образцовые напряжения с резисторного делителя R15—R23. Сигналы с выходов компараторов обрабатывает контроллер на логических элементах «исключающее ИЛИ» (микросхемы DD1—DD5). На линии групповой связи рис. выходы компараторов DA2.1—DA2.4 и DA3.1—DA2.3 обозначены цифрами 1—7, а выходы контроллера — буквами A—H. Выход компаратора DA3.4 не входит в линию групповой связи.
Если напряжение сети меньше 130 В, на выходах всех компараторов и выходах контроллера низкий логический уровень. Транзистор VT4 открыт, включен мигающий светодиод HL1, индицирующий чрезмерно низкое напряжение сети, при котором стабилизатор не может обеспечить питание нагрузки. Все остальные светодиоды погашены, симисторы закрыты, нагрузка отключена.
Если напряжение сети меньше 150 В, но больше 130 В, логический уровень сигналов 1 и A высокий, остальных — низкий. Транзистор VT5 открыт, горят светодиоды HL2 и U1.1, оптосимистор U1.2 открыт, нагрузка соединена с верхним по схеме выводом обмотки автотрансформатора T2 через открытый симистор VS1.
Если напряжение сети меньше 170 В, но больше 150 В, логический уровень сигналов 1, 2 и B высокий, остальных — низкий. Транзистор VT6 открыт, горят светодиоды HL3 и U2.1, оптосимистор U1.2 открыт, нагрузка соединена со вторым сверху по схеме выводом обмотки автотрансформатора T2 через открытый симистор VS2.
Остальные уровни напряжения сети, соответствующие переключению нагрузки на другой отвод обмотки автотрансформатора T2: 190, 210, 230 и 250 В.
Для предотвращения многократного переключения нагрузки, в случае, когда напряжение сети колеблется на пороговом уровне, введен гистерезис 2-3 В (запаздывание переключения компараторов) с помощью положительной обратной связи через R32—R39. Чем больше сопротивления этих резисторов, тем меньше гистерезис.
Если напряжение сети больше 270 В, на выходах всех компараторов и выходе H контроллера высокий логический уровень. На остальных выходах контроллера —низкий уровень. Транзистор VT12 открыт, включен мигающий светодиод HL9, индицирующий чрезмерно высокое напряжение сети, при котором стабилизатор не может обеспечить питание нагрузки. Все остальные светодиоды погашены, симисторы закрыты, нагрузка отключена.
Стабилизатор выдерживает неограниченное время аварийное повышение напряжения сети до 380 В. Надписи, индицируемые светодиодами, аналогичны описанным в [1].
КОНСТРУКЦИЯ И ДЕТАЛИ
Фото собранной конструкции
Стабилизатор собран на печатной плате 90х115 мм из одностороннего фольгированного стеклотекстолита.
- СКАЧАТЬ РИСУНОК ПЕЧАТНОЙ ПЛАТЫ В ФОРМАТЕ DjVu -
Светодиоды HL1—HL9 смонтированы так, чтобы при установке печатной платы в корпус они попали в соответствующие отверстия на передней панели устройства.
В зависимости от конструкции корпуса, возможен вариант монтажа светодиодов со стороны печатных проводников. Номиналы токоограничительных резисторов R41-R47 выбраны так, чтобы ток протекающий через светодиоды симисторных оптронов U1.1-U7.1 был в пределах 15-16мА. Необязательно использовать мигающие светодиоды HL1 и HL9, но их свечение должно быть хорошо заметно, поэтому их можно заменить светодиодами непрерывного излучения красного цвета повышенной яркости, такими как АЛ307КМ или L1543SRC-Е.
Зарубежный диодный мост DF005M (VD1,VD2) можно заменить отечественным КЦ407А или любым с напряжением не менее 50В и током не менее 0,4А. Стабилитрон VD3 может быть любым маломощным, имеющим напряжение стабилизации 4,3…4,7 В.
Стабилизатор напряжения КР1158ЕН6А (DA1) может быть заменен на КР1158ЕН6Б. Микросхему счетверенного компаратора LM339N (DA2,DA3), можно заменить отечественным аналогом К1401СА1. Микросхему КР1554ЛП5 (DD1-DD5), можно заменить аналогичной из серий КР1561 и КР561 или зарубежной 74AC86PC.
Cимисторные оптроны MOC3041 (U1-U7) можно заменить MOC3061.
Подстроечные резисторы R14, R15 и
R23 проволочные многооборотные СП5-2 или
СП5-3. Постоянные резисторы R16—R22 C2-23 с допуском не ниже
1%, остальные могут быть любыми с допуском
5%, имеющие мощность рассеяния не ниже указанной на схеме. Оксидные конденсаторы
C1—C3, C5 могут быть любыми, с емкостью, указанной на схеме, и напряжением не ниже для них указанных. Остальные конденсаторы
C4, C6—C8 — любые пленочные или керамические.
Импортные симисторные оптроны MOC3041 (U1-U7) выбраны потому, что они содержат встроенные контроллеры перехода напряжения через ноль. Это необходимо для синхронизации выключения одного мощного симистора и включения другого, чтобы предотвратить замыкания обмоток автотрансформатора. Мощные симисторы
VS1—VS7 и зарубежные BTA41-800B, так как отечественные той же мощности требуют слишком большой ток управления, который превышает предельно допустимый ток оптосимисторов
120мА. Все симисторы VS1—VS7 установлены на одном теплоотводе с площадью охлаждающей поверхности не менее
1600 см2.
Микросхему стабилизатора КР1158ЕН6А (DA1) необходимо установить на теплоотвод, изготовленный из отрезка аллюминевой пластины или П-образного профиля с площадью поверхности не менее 15 см2.
Трансформатор T1 самодельный, рассчитанный на габаритную мощность 3 Вт, имеющий площадь сечения магнитопровода 1,87 см2. Его сетевая обмотка I, рассчитана на максимальное аварийное напряжение сети 380 В, содержит 8669 витков провода ПЭВ-2 диаметром 0,064 мм. Обмотки II и III содержат по 522 витков провода ПЭВ-2 диаметром 0,185 мм. При номинальном напряжении сети 220 В напряжение каждой выходной обмотки должно составлять 12 В. Вместо самодельного трансформатор T1 можно применить два трансформатора ТПК-2-2x12В, соединенных последовательно по способу, описанному в [2] как показано на рис.
Файл печати устройства Pechat Stab-2.lay (вариант с двумя трансформаторами ТПК-2-2x12В) выполнен с помощью программы Sprint Loyout 4.0, которая позволяет выводить рисунок на печать в зеркальном отображении и очень удобна для изготовления печатных плат при помощи лазерного принтера и утюга. Ее можно скачать здесь.
Автотрансформатор T2 и самодельный, намотанный на тороидальном магнитопроводе, в качестве которого использован статор электродвигателя мощностью 10 кВт способом, описанным в [3]. Его обмотка содержит 280 витков провода ПЭВ-2 диаметром 4,2 мм (сечение 13,6 мм2). Такое сечение необходимо, для того чтобы автотрансформатор не грелся в процессе длительной эксплуатации. Отводы сделаны от 150, 163, 180, 195, 217 и 245-го витка, считая от нижнего по схеме вывода. Участок обмотки, к которому подведено напряжение сети (отвод от 180-го витка), рассчитан на напряжение 380 В.
Если мощность нагрузки не превышает 3 кВт, то автотрансформатор T2 может быть намотан на статоре электродвигателя мощностью 4 кВт проводом ПЭВ-2 диаметром 2,8 мм (сечение 6,1 мм2) Число витков обмотки следует пропорционально увеличить в 1,2 раз. Ток срабатывания выключателя-предохранителя QF1 должен быть снижен до 16 А. Можно применить симисторы VS1—VS7 BTA140-800, размещенные на теплоотводе площадью не менее 800 см2.
НАСТРОЙКА СТАБИЛИЗАТОРА
Налаживание осуществляется с помощью ЛАТРа и двух вольтметров. Необходимо установить пороги переключения нагрузки и убедиться в том, что выходное напряжение стабилизатора находится в допустимых пределах для питаемой аппаратуры. Обозначим U1, U2, U3, U4, U5, U6, U7 — значения напряжения на движке подстроечного резистора R14, соответствующие напряжению сети 130, 150, 170, 190, 210, 230, 250, 270 В (пороги переключения и отключения нагрузки). Вместо подстроечных резисторов R15 и R23 временно монтируют постоянные резисторы сопротивлением 10 кОм. Далее стабилизатор без автотрансформатора T2 включают в сеть через ЛАТР. На выходе ЛАТРа повышают напряжение до 250 В, затем движком подстроечного резистора R14 устанавливают напряжение U6 равное 3,5 В, измеряя его цифровым вольтметром. После этого понижают напряжение ЛАТРа до 130 В и измеряют напряжение U1. Пусть, например, оно равно 1,6 В.
Вычисляют шаг изменения напряжения:
∆U=(U6 – U1)/6=(3,5-1,6)/6=0,3166 В,
ток, текущий через делитель R15—R23
I=∆U/R16=0,3166/2=0,1583 мА
Вычисляют сопротивления резисторов R15 и R23:
R15= U1/I=1,6/0,1583=10,107 кОм,
R23= (Uпит – U6 –∆U)/I=(6–3,5–0,3166)/0,1588=13,792 кОм, где
Uпит — напряжение стабилизации микросхемы
DA1. Расчет приближенный, так как в нем не учтено влияние резисторов
R32—R39, однако его точность достаточна для практической настройки стабилизатора.
Далее устройство отключают от сети и с помощью цифрового вольтметра устанавливают сопротивления резисторов R15 и R23, равные вычисленным значениям и монтируют их на плату вместо постоянных резисторов, упомянутых выше. Снова включают стабилизатор и отслеживают переключение светодиодов, плавно увеличивая напряжения ЛАТРа от минимального до максимального и обратно. Одновременное свечение двух и более светодиодов указывает на неисправность одной из микросхем DA2, DA3, DD1—DD5. Неисправная микросхема должна быть заменена, поэтому удобнее установить на плате не сами микросхемы, а панели для них.
Убедившись в исправности микросхем, подключают автотрансформатор T2 и нагрузку — лампу накаливания мощностью 100…200 Вт. Снова измеряют пороги переключения и напряжения U1—U7. Для проверки правильности расчетов, меняя ЛАТРом входное на Т1 необходимо убедиться в мигании светодиода HL1 при напряжении ниже 130 В, последовательном включении светодиодов HL2 — HL8 при пересечении порогов переключения, указанных выше, а и мигании HL9 при напряжении выше 270 в.
Если максимальное напряжение ЛАТРа меньше
270 В, устанавливают на его выходе 250 В, вычисляют напряжение
U7 по формуле: U7=U6+∆U=3,82 В. Перемещают движок
R14 вверх, проверяют, что при напряжении U7 происходит отключение нагрузки, после чего возвращают движок
R14 вниз, устанавливая прежнее значение U6, равное
3,5 В.
Завершить налаживание стабилизатора желательно его подключением к напряжению
380 В на несколько часов.
За время эксплуатации нескольких экземпляров стабилизаторов разной мощности (примерно полгода) не было сбоев и отказов в их работе. Не было неисправностей питаемой через них аппаратуры по причине нестабильного напряжения сети.
ЛИТЕРАТУРА
1. Коряков С. Стабилизатор сетевого напряжения с микроконтроллерным управлением. — Радио, 2002, №8, с. 26—29.
2. Копанев В. Защита трансформатора от повышенного напряжения сети. — Радио, 1997, №2 с.46.
3. Андреев В. Изготовление трансформаторов. — Радио, 2002, №7, с.58
Версия для печати
Автор: Годин Алексей Валерьевич, г.Москва
P.S. Материал защищён.
Дата публикации 26.01.2005гг
Created/Updated: 25.05.2018